【技术指南】RS-485 设计最全入门指南

2024-07-03 10:26:44 334

1.引言

1983 年,电子工业协会 (EIA) 批准了一个新的平衡传输标准,称之为 RS-485。调查发现,RS-485 备受赞誉并被广泛应用到工业、医疗和消费类产品,成为了工业接口的主力规范。

本应用报告为那些对RS-485标准不熟的工程师提供设计指南,帮助他们在最短的时间内完成稳健而可靠的数据传输设计。

2.标准和特性

RS-485 仅是一个电气标准。与定义功能、机械和电气规格的完整接口标准相比,RS-485 仅定义了使用平衡多点传输线的驱动器和接收器的电气特性。

但是,很多更高级别的标准将 RS-485 规定为引用标准,例如中国的电能表通讯协议标准 DL/T645 就明确指定以RS-485 作为物理层标准。

RS-485 的主要特性:

•平衡接口

•多点采用单一 5V 电源

•–7V 至 +12V 总线共模范围

•多达 32 个单位负载

•10Mbps 最大数据速率(距离为 40 英尺)

•4000 英尺的最大电缆长度(速率为 100kbps)

3.网络拓扑

RS-485 标准建议使用菊花链连接其节点,也称为合用线或总线拓扑(请参阅图 3-1)。在这种拓扑结构中,所使用的驱动器、接收器和收发器通过短网存根接入主干线。接口总线可被设计用于全双工或半双工传输(请参阅图3-2)。

RS-485总线结构

图3-1.RS-485总线结构

全双工实现需要两个信号对(四根电线),以及全双工收发器,其具有用于发送器和接收器的单独总线访问线路。全双工模式允许节点在一个对上发送数据,同时在另一个对上接收数据。

RS-485中的全双工和半双工总线结构

图3-2.RS-485中的全双工和半双工总线结构

在半双工模式下,仅使用一对信号,并要求在不同的时间驱动和接收数据。两种实现方式都需要通过方向控制信号(例如驱动器/接收器使能信号)对所有节点进行控制,确保在任何时候总线上只有一个驱动器处于工作状态。多个驱动器同时访问总线会导致总线争用,这在任何时候都必须通过软件控制来加以避免。

4.信号电平

符合 RS-485 标准的驱动器可在 54Ω 负载上提供不小于 1.5V 的差分输出,而符合该标准的接收器可检测到低至200mV 的差分输入。即使在电缆和连接器的信号严重衰减的情况下,这两个值仍能为高可靠性的数据传输提供了充足的余量。这种稳健性是 RS-485 非常适合在嘈杂环境中进行长距离联网的主要原因。

RS-485规定的最低总线信号电平

图4-1.RS-485规定的最低总线信号电平

5.电缆类型

在双绞线上传输差分信号对 RS-485 应用是有利的,因为外部干扰源会以共模方式均等的耦合到两根信号线上,这些噪声会被差分接收器过滤掉。

工业 RS-485 电缆分为有保护套、无保护套、双绞线、非屏蔽双绞线,符合 22-24AWG 线规的电缆特性阻抗为120Ω。图 5-1 所示为四线对电缆的横截面,这种非屏蔽双绞线通常用于 2 个全双工网络。两对和单对版本的类似电缆可用于低成本的半双工系统设计。

RS-485通信电缆示例

图5-1.RS-485通信电缆示例

除网络布线外,RS-485 标准强制设备的印制电路板布局和连接器要与网络的电器特性保持一致,可以通过使印制电路板上的两根信号线尽可能靠近并等长来实现。

6.总线终端和存根长度

为避免信号反射,数据传输线应始终端接,并且存根应尽可能的短。正确的端接需要终端电阻 RT 和传输电缆的特性阻抗 Z0 匹配。RS-485 标准建议采用 Z0 = 120W 的电缆,因此电缆干线通常与 120 电阻端接,线缆的末尾处各一个(请参阅图 6-1 左半部分)。

正确的RS-485终端图6-1.正确的RS-485终端

在噪声环境下的应用通常将 120Ω 电阻替换为两个 60Ω 电阻,组成一个低通滤波器,用于提供额外的共模噪声滤除能力(请参阅图 6-1 右半部分)。请务必匹配电阻值(宜使用精度为 1% 的电阻),确保两个滤波器的频率降幅相等。较大的电阻容限(即 20%)会导致滤波器转折频率不同,并且共模噪声会转换为差分噪声,从而使接收器的抗扰性降低。

存根的电气长度(收发器与电缆干线之间的距离)应小于驱动器输出上升时间的 1/10,并通过以下公式得出:

公式

表 6-1 列出了图 5-1 中(78% 速率)与各个驱动器上升时间对应的最大存根长度。

存根长度与上升时间

上升时间长的驱动器非常适合那些需要长存根长度和减小器件产生的EMI的应用。

7.失效保护

失效保护使得接收器在缺少输入信号时有能力输出一个确定的状态。

有三种可能的原因会导致信号丢失 (LOS)

1.开路:线缆中断或者收发器从总线断开

2.短路:差分对的导线因绝缘层失效而接触在一起

3.总线空闲:所有总线驱动器均未处于活动状态时,会发生这种情况。

上述条件下,当输入信号为零时,会使传统的接收器输出随机状态,现在的收发器内部都包含一个偏置电路,可以对开路、短路和总线空闲进行保护,即使信号丢失时,接收器也能强制输出一个确定的状态。

这些失效保护设计的缺点是最坏情况下的噪声容限仅为 10mV,因此在干扰环境中,要增加外部失效保护电路以增加噪声容限。

外部失效保护电路由一个电阻分压器组成,可以产生足够的总线差分电压,以驱动接收器产生一个确定的输出状态。为了确保有足够的噪声容限,除了 200mV 的接收器输入阈值外,VAB 还必须包括测得的最大差分噪声,VAB= 200mV + V 噪声。

电阻分压器公式

最小总线电压为 4.75V、(5V – 5%)、VAB = 0.25V 和 Z0 = 120W 时,RB 为 528W。向 RT 插入两个 523W 串联电阻器会建立如图 7-1 所示的失效保护电路。

外部空闲总线失效保护偏置电路

图7-1.外部空闲总线失效保护偏置电路

8.总线负载

驱动器的输出取决于其必须提供给负载的电流,因此在总线上增加收发器和失效防护电路会增加所需的总负载电流。为了估算可能的最大总线负载数,RS-485 指定了一个单位负载 (UL) 的假设项,它表示大约 12kW 的负载阻抗。符合标准的驱动器必须能够驱动这些单位负载中的 32 个。现如今使用的收发器通常可以减少单位负载,例如1/8 UL,从而在总线上连接多达 256 个收发器。

失效防护偏置可贡献多达 20 个单位的总线负载,因此收发器的最大数量 N 减少为:

收发器最大数量N计算公式

因此,当使用 1/8-UL 收发器时,最多可将 96 个器件连接到总线。

9.数据速率与总线长度

在给定数据速率下,最大总线长度受到传输线损耗和信号抖动的限制。当波特周期的抖动为 10% 或以上时,数据可靠性会急剧下降,图 9-1 则显示了传统 RS-485 电缆在 10% 信号抖动下的电缆长度与数据速率的关系曲线。

图9-1.电缆长度与数据速率图 9-1. 电缆长度与数据速率

A.图形的第 1部分显示了短电缆长度上的高数据速率区城。在这里,传命线路的损托可以,忽略不计,数据速率士要由驱动器的上升时问决定。尽管该标准建议采用 10Mbps 的数据速率,但当今的快速接口电路可以高达 40Mbps 的数据速率运行。
B.第2部分显示了从短教据线路到长数据线路的过渡。传输线路的损耗必须考虑在内。因此,随者电缆长度的增加,数据速率必领降低。根据经验法则,线路长度 [m] 与数据述羊 [bps]的乘积应该<10的7次方。该法则要比现如今的电缆性能保守得多,因此,在给定数据速率下,其长度将小于图形所示的长度。
C.第3部分显示了较低的频率范国,在此范国内,线路电阻(而不是开关)会限制电统长度。在此,电缆电阻接近终端电阻的值。该分压器导致信号衰减-6dB。对于 120W 22 AWG 电缆 UTP,这种情况发生在大约 1200m处。

10.最小节点间距

RS-485 总线是一种分布式参数电路,其电气特性主要由沿物理介质(包括互连电缆和印刷电路板轨线)分布的电感和电容决定。

以器件及其互连的形式向总线添加电容会降低总线阻抗,并导致总线的介质和负载部分阻抗不匹配。当输入信号到达这些位置时,会有部分反射回信号源,造成驱动器输出信号失真。

要确保从驱动器输出的第一个信号传输到接收器输入端时电压电平仍有效,需要总线上任何一处的最小负载阻抗Z'> 0.4 x Z0 ,这可以通过在总线节点之间保持最小距离 d 来实现:

总线节点之间保持最小距离 d计算公式

其中 CL 是集总负载电容,C 是每单位长度的介质电容(电缆或 PCB 轨线)。

最小节点间距与器件和介质电容的关系图10-1.最小节点间距与器件和介质电容的关系

方程式 4 显示了最小器件间距与分布式介质和集总负载电容的函数关系;图 10-1 以图形方式展示了这种关系。

负载电容来自线路电路总线引脚、连接器触点、印刷电路板轨线、保护器件以及与干线的任何其他物理连接。因此,总线到收发器(存根区域)的电气距离要尽可能短。

下面介绍了各个电容的容值

5V 收发器的电容通常为 7pF,而 3V 收发器的电容约为 16pF 的两倍。电路板轨线视其结构而定,每厘米大约增加 0.5~0.8pF 电容。连接器和抑制器件的电容可能范围会很大。介质分布式电容范围是 40pF/m(低电容非屏蔽双绞线电缆)至 70pF/m(背板)。

11.接地和隔离

设计远程数据链路时,设计人员必须假定存在很大的接地电势差 (GPD)。这些电压 Vn 会以共模干扰的形式叠加到传输线上。即使总叠加信号在接收器输入共模范围内,依靠本地接地作为可靠地电流回路也是很危险的(请参阅图 11-1a)。

需要注意的设计陷阱图11-1.需要注意的设计陷阱:a)过高的接地电势差,b)过高的环路电流,c)环路电流减小,但环路地很大,对感应噪声会高度敏感

由于远程节点可能会从电气装置的不同部分汲取功率,当对这类装置进行修改(即在维护工作期间)时,会使接地电势差超出接收器的输入共模范围。因此,今天可正常工作的数据链路可能会在将来的某个时候停止运行。

建议也不要通过接地线直接连接远端地(请参阅图 11-1b),这是因为大的环路地电流会以共模噪声的形式驾到信号线上。

为了直接连接远端地,RS485 标准建议通过插入电阻器将器件地与本地系统地隔离开(见图 11-1c)。尽管这个方法减小了环路电流,但是大环路地的存在仍使数据链路对环路沿线某处产生的噪声敏感。因此,到现在为止,尚未建立一个强健的数据链路。

一个可以容忍数千伏接地电势差并且强健的可长距离传输的 RS-485 数据链路方法是信号及供电电源隔离(请参阅图 11-2)。

具有单接地基准的两个远程收发信站的隔离

图11-2.具有单接地基准的两个远程收发信站的隔离

在这种情况下,电源隔离器(例如隔离的直流/直流转换器)和信号隔离器(例如数字电容隔离器)可防止电流在远程系统地之间流动,并避免产生环路电流。

而图 11-2 仅显示了两个收发器节点的详细连接,图 11-3 给出了多个隔离收发器的示例。除一个收发器外,所有收发器均通过隔离接入总线。左侧的非隔离收发器为整个总线提供了单接地基准。

多个现场总线收发信台的隔离图11-3.多个现场总线收发信台的隔离

RS-485标准为工业数据通信提供了坚实的基础,但其设计与实施需考虑多种因素,包括网络拓扑、信号处理、电缆选择以及接地策略,以确保数据传输的稳定性和可靠性。

标签:#RS-485

标签

意法半导体(ST)传感器二级管电容器存储器可调电感器磁珠电源模块嵌入式产品开发嵌入式硬件开发流程TL064CDTMCUSTM32F070CBT6电源管理(PMIC)晶闸管MOS管硬件设计电加热器嵌入式系统电阻器运算放大器数字电源PCB薄膜电容电解电容电路锂电池锂离子电池IC电源海思芯片麒麟芯片电源芯片功率放大器NTC热敏电阻电力电容器无源滤波器励磁变压器苹果M系列芯片Buck电路AC/DC转换器IGBT铝电解电容器钽电容器铝聚合物电容器超级电容器双电层电容器陶瓷电容器薄膜电容器浪涌抑制ic静电放电 (ESD)PTC可复位保险丝EMIBuck电路优化EMC开关模式电源(SMPS)电感器光刻机电路保护避雷器气体放电管涌流限制器( ICL)断路器开关电源GFCI保险丝热熔断体(温度保险丝)芯片电阻/贴片电阻电路设计连接器圆形连接器套管连接器ESD端子连接器模块化连接器同轴连接器RS-485安华高瑞萨电子PCB Layout爬电距离电气间隙三星电子稳压电源DC-DC转换器充电电路电路图大全存储器连接器积层式电感磁珠华为芯片制造过程TVS二极管Lot Number被动元件电路分析方法开关电源重型连接器端子块电气连接瑞萨奥腾收购信号隔离器安全栅区别英飞凌Q3财务营收D-sub连接器D型连接器背板连接器AC电源连接器刀片式电源连接器光纤连接器俄罗斯半导体硅晶圆中微半导体电子元件行业动态无源电子元件德州仪器基本电子元件焊接电子元件电子元件原理电子元件的工作原理电路板(PCB)测试元件发光二极管性能参数第一代计算机中使用了哪些电子元件第一代计算机矩形连接器电子元器件分销商电子元器件在线商城VCO压控振荡器电压控制振荡器编码器编码器常见类型编码器的应用电子元器件采购振荡器可编程振荡器

热门型号